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Abstract 
 

The methodology for manufacturing composite catalyst supports comprising 50 wt. % exfoliated graphite by mold 
pressing was developed. The technique of wetting a relatively hydrophobic powder with liquid to obtain uniform paste for 
press machine was proposed and tested. The dependencies of the samples density on the compacting pressure were obtained. 
The structural characterization was done, i.e. specific surface area, porosity, micro- and mesopores volume, pore size 
distribution were measured. It was found that obtained samples have a specific surface area of about 340 m2/g, total pore 
volume of about 0.28 cm3/g at a true density of 2.3–2.5 g/сm3, practically regardless of compacting pressure in the range from 
16 to 230 MPa. The thermal conductivity coefficients of the sample pressed at 230 MPa were 3.6 and 12.2 W/(m⋅K) along the 
cylinder axis and perpendicular to it, respectively. This anisotropy is due to specific preferential orientation of the heat-
conducting component. The composite reveals similar anisotropy in strength. The strength was measured as 39.4 and  
87.6 N/granule along the axis of the granule and perpendicular to it, respectively. The results of the paper demonstrate that a 
contradictive task of combining high specific surface area, strength and thermal conductivity can be realized in one sample, 
which is important for catalysis applications. 
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Introduction 

 
One of the most effective and rational means of 

accelerating chemical processes is catalysis [1–3]. 
Heterogeneous catalysis is much more widespread in 
industry than homogeneous one [1]. Composition and 
chemical structure of catalysts are extremely diverse. 
They can be in elemental form or in the form of various 
compounds, such as oxides, sulfides, metal complexes 
with organic ligands. Supported catalysts are often 
used, resulting from the distribution of a catalytically 
active component on a support or in its volume [4, 5]. 
Materials with a highly developed surface are used to 
create a support [1], and usually the support is not 
completely inert during the process [6]. Since 
heterogeneous catalytic reactions are often highly 
exothermic, heat-conducting additives are introduced to 
boost a catalytic system. For example, aluminum and 
its alloys [7–9], metal foams [10–12] or carbons such 
as nanofibers, etc. [13, 14] are used as heat-conducting 
additives in the Fischer-Tropsch synthesis [15, 16]. 

Aluminum metal forms an effective heat-conducting 
lattice, which significantly improves the properties of 
the catalyst. The main disadvantages of using 
structured blocks, foamed metals or other highly 
conductive materials such as silicon carbide [17, 18] 
are low specific surface area and the complexity of the 
use of some active components.  

In present work nanostructured carbon in the form 
of exfoliated graphite was used as a heat-conducting 
additive in the composition of a catalyst support used in 
the Fischer-Tropsch synthesis.  

The aim of this paper was to study the structural 
and physical properties of a composite catalyst support 
prepared by mold pressing with use of exfoliated 
graphite as a heat-conducting component. 
 

Experimental 
 

Composite catalyst supports comprising 50 wt. % 
exfoliated graphite (powder provided by 
UNIKHIMTEK), 20 wt. % boehmite Disperal P2,  
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30 wt. % ammonium form of zeolite Zeolyst CP814c 
were prepared by mold pressing (high pressure 
tabletizing). The composition values above indicate 
percentage of components in a dry mixture. Sample 
preparation consisted of  

1) mixing of boehmite, zeolite and graphite in the 
indicated weight ratios;  

2) preparation of the liquid phase: a solution of 
nitric acid HNO3 (64 %) and TEG (triethylene glycol 
C6H14O4). For 10 g of dry mixture we took 0.45 ml of 
HNO3 (concentration of 64 %), 1.5 g of TEG and 5 ml 
of H2O;  

3) addition of liquid phase to the mixture of 
boehmite, zeolite and graphite;  

4) manual mixing until a homogeneous paste is 
formed;  

5) mold pressing of the samples at different 
pressures in the range from 10 to 660 MPa;  

6) heat treatment of granulated samples in a muffle 
furnace at the temperature up to 300 °C and exposition 
under these conditions. 

The composition of the catalyst support 
corresponds to the composition of an extruded catalyst 
support, which has previously proved to be effective in 
the Fischer–Tropsch synthesis and used as a standard. 
The choice of the main components of the support is 
due to binding properties of the boehmite, acidic 
centers of a zeolite, and high thermal conductivity of 
graphite. TEG in the liquid phase is used as a 
plasticizer, while HNO3 is used for peptization of 
boehmite. Samples were pressed in molds.  
The resulting samples were cylinders with a diameter 
of 2.5 mm and a height of 3.5 mm. 

The specific surface area and 
pore size distribution were 
determined by Autosorb-1c 
instrument. The true density of the 
samples was determined by 
Ultrapyc 1200e gas pycnometer 
(Quantachrome Instruments). The 
thermal conductivity was calculated 
from the heat capacity and thermal 
diffusivity determined by DSC 8000 
differential scanning calorimeter and 
an LFA 457 MicroFlash instrument 
from NETZSCH-Gerätebau GmbH, 
respectively. The strength of the 
samples was determined by 
DiaTest-S instrument. The micro-
structure of the samples was 
investigated by Tescan Vega 3 
scanning electron microscope. 

Results and Discussion 
 

The mold pressing of the catalyst supports was 
carried out in the pressure range of 10–660 MPa. Pure 
graphite was used as a reference compound for 
checking the quality of the obtained samples. One of 
the most important parameters for the operation of the 
catalyst is the apparent (geometric) density obtained as 
the ratio of a geometric volume to weight. The results 
of experiments to determine the apparent density are 
presented in the “density-pressure” coordinates (Fig. 1). 

The density-pressure dependence curve for 
graphite samples comes on a plateau at appr. 2 g/cm3 

after reaching a pressure of 250–300 MPa. The pressure 
dependence of the apparent density for the catalyst 
support samples (see Fig. 1) is generally similar  
to the dependence for reference graphitic granule.  
The calcined support density-pressure dependence 
shows a similar plateau at appr. 1.5 g/cm3. In addition, 
the density of granules during calcination decreases due 
to desorption of adsorbed and chemically bound liquid 
(TEG, acid, water, etc.). 

Channels and pores are formed during calcination. 
It was noted that the drop-by-drop introduction of 
liquid phase gives nonuniform mixing: the mixture is 
divided into well-moistened lumps and dry powder. 
Therefore, the introduction of the liquid phase was 
made by spraying of smallest particles through an 
atomizer, which makes it possible to obtain a uniformly 
homogeneous paste for pressing. 

Samples were prepared at pressures of 16, 24,  
230 MPa (at the beginning, at the inflection and plateau 
of    the   curve  respectively)  to   compare   structural  

Fig. 1. Dependence of apparent density on compacting pressure  
for composite supports comprising 50 wt. % exfoliated graphite:  

– calcined samples;     – raw samples 
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Continuation of the Table 3 

 

1 2 3 4 

 200.7 2.73 4.0 
225.6 2.61 3.8 

250.6 2.53 3.7 

3 125.1 2.93 4.2 

151.2 2.80 4.0 

176.2 2.70 3.9 

201 2.59 3.7 

226 2.50 3.6 

250.9 2.42 3.5 
4 125.4 2.79 4.0 

150.7 2.71 3.8 

175.7 2.58 3.7 

200.7 2.49 3.5 

225.7 2.36 3.3 

250.7 2.31 3.3 
5 124.0 2.61 3.8 

151.7 2.45 3.5 

176.7 2.36 3.4 

201.5 2.26 3.3 

226.3 2.19 3.2 

251.2 2.12 3.1 
6 125.1 10.25 13.6 

150.7 9.83 13.0 

175.9 9.24 12.3 

200.9 8.94 11.9 

225.8 8.45 11.2 

250.8 8.26 11.0 

 
Conclusions 

 
A study of structural and physical properties of 

composite catalyst supports comprising 50 wt. % 
exfoliated graphite by mold pressing was carried out. 
The technique of wetting a relatively hydrophobic 
powder with liquid to obtain uniform paste for press 
machine for a preparation of composite supports was 
proposed and tested. It was found that the obtained 
composites have a specific surface area of about  
340 m2/g, total pore volume of about 0.28 cm3/g at a 
true density of 2.3–2.5 g/сm3, practically regardless of 
compacting pressure in the range from 16 to 230 MPa. 

The thermal conductivity coefficients of the sample 
pressed at 230 MPa were 3.6 and 12.2 W/(m⋅K) along 
the cylinder axis and perpendicular to it, respectively. 
This anisotropy is due to specific preferential 
orientation of the heat-conducting component.  
The composite reveals similar anisotropy in strength. 
The strength was measured as 39.4 and 87.6 N/granule 
along the axis of the granule and perpendicular to it, 
respectively. The results of the paper demonstrate that a 
contradictive task of combining high specific surface 
area, strength and thermal conductivity can be realized 
in one sample, which is important for catalysis 
applications. 
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