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Abstract 
 

The paper describes the fundamentals of architectural design methodology of software systems implementing the tasks of 
mathematical modeling of technological processes / objects in the chemical industry. The existing software systems focused on 
solving engineering problems based on mathematical modeling of physical and chemical processes carried out in technological 
devices are analyzed. The authors show that all software systems are based on the use of numerical solutions of mathematical 
modeling tasks for technological processes / objects, which significantly limits their ability to organize the computation 
process and requires an individual approach to the development of each software system. 

The urgency of developing a universal methodology for constructing software systems implementing models of the 
technological processes and equipment based on analytical solutions of mathematical physics tasks in partial derivatives is 
discussed. The developed methodology includes principles for formulating mathematical statements of tasks and methods for 
solving them ensuring their effective computer implementation; principles for building software systems as structural and 
dynamic analogues of technical systems. The application of the methodology is illustrated by the example of developing  
a software system implementing a model of non-stationary heat exchange processes in a shell-and-tube heat exchanger.  
The main emphasis in the example is put on the dynamic compliance of the software system and process equipment.  
It is shown that the calculation of the characteristics of the processes occurring in the heat exchanger simultaneously can be 
implemented in parallel in the software system, and the characteristics of successive processes can also be calculated 
sequentially. 
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Introduction 

 
Mathematical modeling is now widely used to 

improve the performance of complex technological 
equipment. Modeling is the main tool that provides 
additional information about the processes occurring in 
it and is used to solve design, optimization, 
management, decision-making and forecasting tasks.  
In this paper the process equipment is considered as a 
technical system – a set of related and interacting 
elements. The most complete information about the 
patterns and conditions of non-stationary processes 
occurring in technical systems can be obtained by 
mathematical modeling of the fields of their target 
characteristics. 

In this case, solutions of mathematical modeling 
tasks are considered as a combination of mathematical 

operators and algorithms for their use, aimed at 
obtaining quantitative characteristics of the fields. 
Despite the fact that the solutions presented in this form 
fully provide the possibility of calculating the fields,  
it is impossible to use them manually without 
computing technologies in most cases. A one-time 
calculation involves a large number of intermediate 
calculations. In practice, such calculations are carried 
out repeatedly, for different values of the source data. 

Thus, for modeling tasks which are solved in order 
to increase the quality of technical systems, it is not the 
solutions themselves that are of major importance, but 
their software implementation. Programs can represent 
separate information systems interacting with a person, 
or function as part of technical systems interacting with 
their component parts. Solutions are used as the basis 



 

 

Advanced Materials & Technologies. No. 2, 2019 70

 

AM&T 
of the program, but the program brings the main result. 
The user or other information systems interact with 
programs, but not with algorithms and mathematical 
operators. The form of the software implementation of 
algorithms and mathematical operators, as well as the 
decisions themselves, determine the quality of the 
simulation results obtained: the number of assumptions 
made, the accuracy, the time for obtaining the results 
and the further possibilities for its use. Therefore, the 
software implementation of solutions and its quality, 
i.e. such factors as the program structure, the 
complexity of its data flow and control, the efficiency 
of using computing resources, calculation time, 
reliability, resistance to incorrect source data, the 
ability to reuse code, are of fundamental importance for 
modeling tasks. 

 
Materials and methods 

 
Software implementing the tasks of modeling 

processes which occur in technical systems varies from 
narrowly specialized applications focused on the 
efficient solution of tasks within one application area to 
large general-purpose applications designed to solve  
a wide range of tasks in various application areas. 

 
General-purpose systems 

 

General-purpose applications are a multi-purpose 
analysis tool that can be used in various technical 
disciplines. Such applications as ANSYS, 
SolidWorks  Simulation, Autodesk  Simulation, Abaqus 
FEA, and MOOSE can be mentioned as an example. 
These are large applications focused on working with 
powerful desktops or specialized computing stations. 

A characteristic feature of these applications is the 
unification of formulating modeling tasks, methods for 
their solution, and forms for presenting the results 
obtained [1 – 7]. 

The unification of statements is achieved due to 
the fact that the user tasks are constructed as special 
cases of general statements, which are formulated 
separately for each class of processes. Processes are 
usually classified according to the physical disciplines 
and engineering applications on which they are 
oriented, e.g. hydrodynamic processes, deformations of 
solids, heat and mass transfer, high and low frequency 
oscillations. This form of task statement can be used in 
various, unrelated applied fields. 

Each common task chooses its own solution which 
is used to solve all private, custom tasks based on it. 
The main criteria for choosing a method are 
universality, wide dissemination, knowledge and 

predictability of the obtained results when it is used 
within the framework of the class of tasks which the 
general task refers to. To solve systems of differential 
and algebraic equations expressing the formulations of 
modeling tasks, numerical methods are currently the 
most widely used. This fact and the criterion of 
universality become the reason that the finite element 
method and its varieties are used in all the considered 
applications for solving modeling tasks [1 – 7]. 

The result of such applications is a one-time 
solution of a particular task with obtaining the fields of 
the target characteristics of the modeled processes in 
time and space. At the same time, the boundary 
conditions of the task and the values of the constants 
determining the course of the processes are formulated 
at the stage of task statement and are not changed 
during the calculation. When changing the boundary 
conditions, the task must be set and solved by the user 
again. This is the reason for the additional assumption 
that the boundary conditions and constants are 
permanent for the entire duration of the process. 

In real technical systems, several interdependent 
processes take place simultaneously. The boundary 
conditions and the values of the constants determining 
the course of one of the processes may change under 
the influence of others. In this case, the search for 
process characteristics is possible with repeated, 
iterative repetition of calculations for short time 
intervals, when new source data are set for each 
interval. 

In the considered applications, the functionality is 
not developed to ensure multiple calculations using the 
previously obtained results, which describe the state of 
the system at the time of the end of the previous time 
interval, as the source data. Difficulties in organizing 
such calculations are also determined by the form of 
presenting the simulation results, which in these 
systems, as well as the formulation and methods of 
solution, is focused on a universal and visual 
presentation of the results of solving a wide range of 
tasks in different, unrelated applied areas to the user. 
The results are presented visually in the form of a set of 
values, which quantitatively characterize the fields of 
the target characteristics, and graphical dependencies. 
They are poorly oriented for further, repeated use in 
computational procedures, providing an iterative 
algorithm, or transfer to other automated systems 
ensuring their operation. This makes it difficult to take 
into account the specifics of the task being solved and 
narrows the scope of application of the simulation 
results. 

The options for determining the system of 
assumptions and uniqueness conditions for constructing 
a particular task are limited to the most common ones. 
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Therefore, it is impossible to take into account in detail 
the operation features of the simulated processes in the 
technical system. 

The main feature of general-purpose systems 
focused on the unification of solutions for a wide range 
of different tasks is the necessity to find a compromise 
between the costs on performing calculations and the 
accuracy of the results [8]. This is due to the large 
number (from thousands to hundreds of thousands) of 
finite elements into which the process areas are divided. 
For each element, the system of equations describing its 
state and behavior is repeatedly iteratively solved. The 
set of individual states of all elements determines the 
state of the object being modeled. 

Designing a large number of particular tasks on 
the basis of one general task by setting the values of the 
coefficients in the system of equations may cause 
discrepancy in the obtained results, which do not 
correspond to the physical picture, though the problem 
is formally correct. For complex software systems, in 
which the software system implementing the modeling 
tasks is included as an integral part and ensures the 
operation of other systems, it is of fundamental 
importance. In this case, the simulation results are 
transmitted directly to other systems without the 
possibility of their analysis and adjustment by an 
expert. 

Thus, despite the desire for universality of using 
and expanding the range of solved modeling problems, 
the general-purpose systems have their own specific 
application niche and the area of modeling tasks being 
solved. This is stipulated by the features listed above. 

 
Specialized systems 

 
Besides universal general-purpose software 

systems, there is a large number of specialized software 
systems. The difference consists in detailed considering 
only a narrow class of tasks within one application area 
allowing to obtain high-quality simulation results.  
The spread of computer modeling for solving applied 
problems and individual requirements for the quality of 
modeling imposed on tasks within each applied area 
determine the excess of the number of specialized 
software systems over the number of general-purpose 
systems. 

Compared to universal systems, specialized ones 
allow for a more thorough formulation of tasks, taking 
into account a greater number of factors and their 
interrelations which determine the course of simulated 
processes during their formulation. The solution 
methods used in these systems allow to obtain more 
accurate results compared to the methods used by 
universal general-purpose systems. Increasing their 

accuracy is achieved by taking into account the 
specifics of the task determined by the applied area, the 
nature of the processes, the structure of equations and 
the way the simulation results are used. 

A detailed account of the task features at the stages 
of its formulation and solution determines the 
improvement of the quality of simulation results when 
using specialized systems. The consequence of such 
opportunities is a narrow range of tasks. It is possible to 
note the tendency according to which the more 
specialized the software system is, the higher the 
quality of the obtained results [9 – 15]. 

Specialized programs do not require less 
computational resources for their work compared to 
universal ones. In most cases the obtained results are 
not transmitted to other subsystems and are presented 
to the user. The issues of improving the performance of 
calculations are considered, but there is no hard limit 
on the time for obtaining the results. 

The detailed consideration of the process features 
complicates the task and requires additional 
computational resources when solving it. In general, 
both specialized and universal systems require the same 
number of simulation results, which must be as high as 
possible to increase their accuracy and quality. 

Among the specialized modeling programs, we 
can single out those based on agent-based modeling 
(ABMS). The solution of modeling problems in these 
systems is based on the property of software agents to 
have conscious behavior – reactive, proactive, and 
social. Agent-based modeling is primarily used to study 
the behavior and interaction of individuals or 
organizations in specific situations or environments. 
ABMS can be used to study an existing system, which 
is analyzed to understand its behavior in response to 
specific changes in the environment or at the design 
stages, when creating new systems [16]. 

The main disadvantages of universal modeling 
systems are the limited ability to correctly formulate a 
modeling problem, taking into account the features of 
the domain and the physical system in which the 
simulated processes take place, the automatic addition 
of the task statement with expressions and constants in 
order to ensure the possibility of its solution when 
defining the task, which cannot be solved by the 
methods used in the program. This provides the 
possibility of obtaining plausible results with the 
obviously incorrect formulation of the task, but these 
results will not reflect the true picture of the process. 
These systems can be used to solve common typical 
problems, where there is no special need to take into 
account a large number of specific features.  
The simulation results must be presented to the expert 
so that he can assess their adequacy and, if necessary, 
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correct the formulation of the task with available 
means, adjust the implementation of the solution 
method and repeat the calculation again. 

The disadvantage of specialized programs is  
a small range of tasks for each of them. Taking into 
account the peculiarities of the processes occurring in 
them is so specific that it is very difficult to use them 
outside the subject area and the range of tasks for 
which they were developed. When new tasks arise, it 
becomes necessary to develop a new modeling 
program. There is no universal method for developing 
programs for modeling processes occurring in technical 
systems. The development of each system is a creative, 
iterative process that requires a lot of time, human 
resources and, consequently, finances. 

A common feature of universal and part of 
specialized programs is that they implement the design 
and solution of a mathematical problem. The physics 
and nature of the simulated processes are considered 
only at the stage of its design. The resulting problem is 
solved further independently using software 
implementations of only mathematical operators.  
The solution results are the values of individual 
functions, each of which represents the target field 
characteristics of a single element of the technical 
system. With such an organization of modeling, the 
dynamics of interaction of the technical system 
elements is considered to be limited. There is  
a fundamental discrepancy between the time diagrams 
of the program and the time diagrams of the technical 
system – their statuses do not match at any equal time 
intervals from the beginning of the technical system 
and the program operation. 

Now computer simulation is performed in several 
stages. First, assumptions are defined which simplifies 
the understanding of the technical system and the 
processes occurring in it. Then, for the obtained 
simplified representation of the technical system,  
a mathematical model is constructed. As a result, the 
technical system is replaced by a mathematical one, 
with new essential connections between them, which 
do not coincide with the essential connections of the 
original technical system. The next step is to solve the 
resulting system of equations and its software 
implementation. It also modifies the entities and 
relationships between them, which were present in the 
mathematical system, into linguistic elements of the 
programming language and fragments of the executed 
code representing continuous processes in discrete 
form. We can say that the representation of the 
technical system is distorted in the process of computer 
simulation. This happens more or less at all stages of 
computer simulation. The user interacting with the 
program sees the program representation of the 

technical system, which is the result of three 
transformations. 

The modern level of the theory and methods of 
software systems engineering allows to take into 
account the specifics and to expand the possibilities of 
using analytical solutions. This implies the definition of 
software in terms of system links and functioning 
patterns of the technical system elements, where the 
simulated processes take place, but not in terms of the 
mathematical formulation of the task and algorithms for 
its solution. In this case, the software implements the 
calculation of the characteristics for the processes 
occurring in the technical systems on the basis of 
calculations which correspond to these processes 
structurally and dynamically. Wherein, the software 
itself is represented as a software system that 
structurally and dynamically corresponds to the 
technical system. The principles of designing the 
software systems and the principles of their 
functioning, which form the basis of the new 
architectural design methodology, have been developed 
for this purpose. 

 
Construction and operation principles  

of software systems 
 
The paper proposes a universal method of 

architectural design of software systems for process 
equipment based on the principle of structural and 
dynamic correspondence of calculations to the 
technical system. It covers two main phases of the 
software life cycle – the development phase and the 
implementation phase. 

The general provisions of methodology are 
considered on the example of building a software 
system for modeling an industrial adsorber (Fig. 1) and 
involve decomposing a technical system, excluding 
those components that are not used in calculating the 
required characteristics from the point of the adopted 
system of assumptions, and determining for each of its 
elements a set of quantities characterizing its state, 
which are necessary for calculating the required 
characteristics. The decomposition of a technical 
system is performed to a level at which structural 
elements obtained by analytical solutions can be 
received. 

Next, the image of the technical system is 
constructed in the address space of the computing 
complex. For each element of the technical system, its 
software abstraction is created. It is based on the 
methods of object-oriented design and presents a 
computational entity consisting of a set of variables 
describing its state and a set of functions that perform 
operations on them. Functions provide abstraction 
behavior. 
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Fig. 1. Building a software image of the technical system on the example of an industrial adsorber 
 
Abstractions are interconnected so that they 

organize a structure that coincides with the structure of 
the technical system. These are structural links 
providing an image in the software system of the 
technical system design. Further, information links 
representing the interaction of the technical system 
elements are added between the abstractions. 

Sets of variables equivalent to the previously 
defined sets of values that characterize the state of the 
technical system elements are implemented for 
abstractions. Within each abstraction, a local 
mathematical problem is constructed and solved to 
calculate the values of its variables. It is constructed 
considering certain interrelations of abstractions.  
Then functions ensuring the calculation of the values of 
state variables and implementing the calculation of 
mathematical operators that represent analytical 
solutions are determined. 

The calculation of the processes characteristics is 
provided by the interrelated work of abstractions.  
Their interconnection in the calculation process is 
carried out through the exchange of messages and 
through channels built on the basis of established links 
representing the interaction of the technical system 
elements. 

The main work of software abstractions is 
calculating the properties of the corresponding 
elements of the technical system. The structural 

conformity of the program and the technical system 
allows the use of a single method for describing their 
states. It is presented as a set of quantitative and 
qualitative characteristics of the processes occurring in 
its structural elements, a set of characteristics of the 
structural elements themselves and a set of 
characteristics describing the interaction of elements in 
the following form: 
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Technical system  Software system 

State of the element State of abstraction  

Changes in the state of elements  Changes in the state of abstraction 

Interaction of elements Information interchange between 
abstractions 

Impact of element I1 on element I2 Sending a message by abstraction  A (I1)  
to abstraction  A (I2) 

Impact type  Message type 

Exposure time  Message time 

Changes in the state Calculation of the state 

Time of the state changes Calculation time of the state 
 

Fig. 2. Compliance of the processes in the software and technical systems 
  
The main work of each abstraction is aimed at 

calculating the values of the variables contained in it, 
describing its state. The software abstractions, as well 
as elements of the technical system during the working 
process, constantly interact with each other, as a result 
of which their state changes. This ensures the need to 
perform multiple calculations of the state of each 
abstraction. The initial data for calculating the state of 
each abstraction are the data of neighboring 
abstractions associated with it. This corresponds to the 
change in the state of the technical system elements 
under the influence of related elements. 

Below (Fig. 2) the correspondence of terms 
peculiar to a technical system to computing operations 
occurring in a software system is shown. 

This compliance is the basis of the set of 
computational operations allowed in software images 
of technical systems. 

Temporal diagrams of abstractions are organized 
as they are organized for the relevant elements of the 
technical system. For example, during the flow of 
coolant in the annular space of the heat exchanger, the 
heat transfer occurs simultaneously to the tube walls 
and the shell. Accordingly, the calculation of their 
temperatures is carried out in parallel. 

In this case, the coincidence of the states of the 
technical and software systems in time can be ensured. 
This can be both a coincidence of states in real time, 
and, in general, their indirect coincidence in time when 
the real-time axis is scaled up or down for the software 
system. 

The main feature of the execution stage of the 
software system is the coincidence of its states and 
behavior with the states and behavior of the technical 
system. 

The equivalence of the software and technical 
system structures ensures the presence in the software 
system of only abstractions of the technical system 
elements and the absence of others (Fig. 3).  
All elements performing service calculations,  
e.g. centralized data storage, message and transaction 
managers, etc., are excluded from the software system 
to ensure its operation. The use of software elements 
performing service functions is characterized by their 
association with all software system elements. Their 
exclusion greatly simplifies the software system 
structure. 

Service calculations cannot be completely 
excluded. In this case, they are distributed between 
abstractions. When an abstraction approaches to the 
technical system element according to the 
correspondences shown in Fig. 2, it enhances its 
coherence, i.e. the degree of logical completion, and the 
focus of all its resources on solving tasks of calculating 
the values determining its state. The ideal coherence is 
the coherence of the technical system elements. 
 

     
 

Fig. 3. Simplification of the software system structure  
with the exclusion of service components  

(on the example of an eight-element software system  
with the exclusion of the service elements 6 and 2) 



 

 

Advanced Materials & Technologies. No. 2, 2019 75

 

AM&T 
The total number of service calculations in the 
distribution of their abstractions decreases. The number 
of service calculations also decreases with increasing 
the abstraction coherence. 

The equivalence of the dynamics of the software 
and technical systems, the organization of time 
diagrams for the operation of abstractions, as well as 
the time diagrams for the operation of the technical 
system elements allow to provide parallel computing 
(Fig. 4). It increases the efficiency of calculations and 
reduces the time spent on their performance. 

The dynamic and structural correspondence of the 
software and technical systems allows to streamline and 
unify the information exchange between abstractions. 
The content of information flows in this case is defined 
as the parameters of the impact of the technical system 
element on the neighboring associated elements. Using 
analytical methods for calculating the state of 
abstractions always determines the content of 
information flows as a set of physical values only.  
The representation of information flows between 
abstractions according to the correspondence system 
shown in Fig. 2 reduces the number of message types 
that must be processed during the work of abstractions 
(Fig. 5). This allows to further improve the efficiency 
of the internal work of abstractions themselves,  
i.e. it leads to reducing the cost of computing resources 
for generating new abstractions, receiving and 
processing messages, and simplification of internal 
control flows.  

To represent the properties of abstractions, 
elementary types or complex data structures are used. 
Elementary data represent single values describing the 
above listed properties of components: geometric 
parameters, physical characteristics, etc. If the physical  

 

 
 

Fig. 4. Reducing computation time when organizing parallel 
work of abstractions 

a – Consistent work of abstractions ∑
=
τ=τ

n

i
i

1
; 

b – Parallel work of abstractions nii ...,,1,max ∈τ=τ  

     
 

Fig. 5. Unification of the number of transmitted messages 
(on the example of a software system consisting  

of four abstractions; different types of messages are shown  
with different geometric shapes, and different sizes  

of the figures shows different sizes of messages) 
 

characteristics of the media change, e.g. depending on 
the temperature, during the simulated processes, the 
corresponding properties of the component are 
represented by functions. 

A single abstraction is a complex program 
element. Representing the technical system element, its 
physical and structural characteristics, it implements 
the mechanism for calculating the states of the 
corresponding element of the technical system and the 
processes taking place therein. The main characteristics 
of the technical system processes are temporal and 
spatial temperature and concentration fields. They are 
represented by complex mathematical operators, which 
cannot be described using only elementary data types. 
For their representation, program elements, which 
include complex data structures describing the values 
of constants for mathematical operators and functions 
implementing the calculation of their values, are used. 
These elements are located inside abstractions; in 
relation to the software system, they are local and not 
visible outside the abstractions in which they are 
implemented. In such a way the software abstractions 
can save detailed information about the set of their 
unique states in the form of fields of target 
characteristics, which are functions of three coordinates 
and time. 

 
Applied aspects of the methodology 

 
The applied aspects of the basic methodological 

principle, i.e. the structural and dynamic 
correspondence of the program and technical systems, 
are illustrated by the example of building a software 
system for modeling a shell-and-tube heat exchanger. 
The main attention is paid to illustrating the features of 
constructing the dynamic correspondence and justifying 
the choice of those computational processes that will be 
performed in parallel and in consistency. Two different 

1 2 3 n • • • 

τ1 τ2 τ3 τn 

a) 

b) 

1 2 3 • • • n τ1 τ2 τ3 τn 
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options are given for representing the dynamics of a 
technical system and the corresponding options for 
organizing the dynamics of a software system. 

As an illustration, a computer model of a one-way 
shell-and-tube heat exchange equipment is used.  
The nonlinearity of the task for calculating non-
stationary heat transfer modes is caused by changing 
the heat exchange process of thermophysical properties. 
One of the ways to take it into account is representing 
the heat exchange zone as a set of sections where the 
thermophysical properties of coolants can be 
considered constant. 

The non-stationary cell is a fragment of the 
apparatus enclosed between two planes perpendicular 
to the longitudinal axis of the apparatus. It was 
assumed for each cell that the thermophysical 
characteristics of coolants along the cell length remain 
constant, corresponding to the temperature at the 
entrance to the cell, and change abruptly during the 
transition to the next cell. Temperatures of coolants 
along the cell length become solutions of the 
differential equation of heat transfer by a fluid moving 
in the mode of ideal displacement along the channel 
with allowance for heat transfer by thermal 
conductivity [17] (Fig. 6). 

The calculation includes the solution of two non-
stationary tasks of thermal conductivity: 

− for a hollow unlimited cylinder (the calculation 
of the temperature field in the walls of the apparatus 
tubes); 

− for a double-layer unlimited cylinder (the 
calculation of the temperature field in the heat-insulated 
apparatus wall). 

First, the temperature of the inner and outer walls 
of the heat exchanger tube is calculated. To do this, the

non-stationary thermal conductivity task in the cylinder 
is solved. The temperature field in the wall is described 
by solving a differential equation [17]. 

According to the obtained wall temperatures, the 
density of the heat flow from the hot coolant to the wall 
and from the wall to the cold coolant is calculated. 
Next, the amount of heat which hot and cold coolants 
have received is calculated. According to the known 
initial temperature of the coolants in the cell and the 
amount of heat which the coolant has received in the 
cell, it is possible to calculate the coolant temperature 
at the cell outlet. 

The cell length is taken such that the temperature 
change along its length is sufficiently small, which 
entails a sufficiently small change in the 
thermophysical properties. Getting the temperature 
distribution in the apparatus involves the calculation of 
all the cells that make up the apparatus. 

The way to solve the task is determined by the 
adopted system of assumptions, i.e. which processes 
are considered, and from what point of view they are 
considered. Below there are two different calculation 
options based on different views of the processes 
occurring in the coolant. Herewith, these options 
clearly illustrate the features of the considered method 
for designing software systems. 

The structural conformity of the software and 
technical systems for these two described variants 
remains unchanged. These calculation variants differ in 
the ways of considering the dynamics of the technical 
system and, accordingly, their representation in the 
software system and calculations. The structure of the 
software system is shown in Fig. 7. 

 
 

  
 
 

Fig. 6. Thermal scheme of a non-stationary cell: 
HC – hot coolant; CC – cold coolant;  

1 – tube space; 2 – tube wall; 3 – annular space; 4, 5 – housing wall with an insulation layer; 6 – environment;  
tс1 – hot coolant temperature; tc2 – cold coolant temperature; tс3 – ambient temperature 

HC 

CC 

t1 in 

t2 in 

t1 out 

t2 out 
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Fig. 7. Software system structure 
 
The first option is based on the sequential 

calculation of all cells (Fig. 8). Here the calculation 
process is compared to the movement process of the hot 
coolant and the successive change in its temperature 
along the movement direction. For the forward flow, 
when the temperatures of the two coolants in the cell 
are known, it begins with the first one, into which the 
hot coolant enters and continues along its movement to 
the last cell. In the case of reverse flow, coolants are 
fed from opposite ends of the apparatus and, 

accordingly, the temperature of one coolant is known in 
the first cell, while the other – in the last cell. In such a 
situation, the above condition for the temperature 
awareness is not fulfilled for two coolants in the cell 
simultaneously, and the start of the sequential 
calculation of all cells is impossible. Therefore, an 
iterative algorithm is used. The calculation is carried 
out for a fixed time interval. For the next interval, 
another hot coolant inlet temperature is taken and the 
calculation is repeated. 

 

 
 

Fig. 8. Algorithm for calculating a non-stationary temperature field in the apparatus with sequential cell calculation 
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The second option considers the heat exchange 

process as a combination of two independent actions 
separated in time – the movement of coolants and the 
calculation of their temperatures in each cell. These two 
actions in the heat exchanger occur simultaneously, 
while in the software system they are separated in time. 
First, the coolants are moved, then they are positioned 
in space, and finally the temperatures are calculated. 
Here, the process of calculating temperatures is 
compared to the process of changing the coolant 
temperature over the entire length of the process area in 

the absence of coolant movement during the time 
interval when the calculation is carried out. After the 
coolant temperatures have been calculated, the 
transition to the next time interval is performed.  
This calculation option does not require various 
algorithms for the forward and reverse flow calculation. 
The calculation of these two options is implemented by 
a universal algorithm. This is achieved by separating 
the processes of moving coolants and heat exchangers 
in time (Fig. 9). 

 

 
 

Fig. 9. Algorithm for calculating the temperature field in the apparatus with the parallel cell calculation 
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Fig. 10. Time line of calculating a non-stationary cell 
 
The algorithm for calculating a single cell in the 

first and second variants is implemented in parallel, in 
accordance with the processes occurring in it. Fig. 10 
shows this algorithm in the time line. 

The two shown options fully implement the 
principle of the considered method on the dynamic 
correspondence of the program and technical systems. 
The first calculation option is based on the 
representation of the process when the coolant 
temperature changes sequentially as it moves through 
the apparatus. Accordingly, the coolant temperature in 
the cells is calculated sequentially. Parallel temperature 
calculation in all cells in this case is impossible. 

The second option is based on the idea of placing 
coolants in the heat exchanger so that the heat exchange 
process takes place simultaneously along the entire 
length of the process area. The initial temperatures of 
coolants in each cell are known. Herewith, the 
calculation of cells is organized in parallel. 

Fig. 7 and 8 show that the number of conditional 
statements, branching and transitions decrease as the 
degree of parallelism increases. It results in a reduction 
in the number of decisions that need to be made during 
the program execution. 

 
Conclusion 

 
The developed methodology makes it possible to 

build software systems in terms of a technical system, 
the area of its use and purpose, as well as to take into 
account the peculiarities of the software system 
functioning at the structural level. Besides, the 
generated abstractions and semantics based on the 
objects of the technical complex and the subject area 
allow developers and, especially, users to perceive 
themselves as directly working with the subject area 
elements. This condition determines the main 

advantages of the considered methodology,  
i.e. improving the efficiency of the application 
development process, the possibility of involving experts 
from the applied area into the development process, 
improving the efficiency of the software system and 
computing, the ability to build applications of a wide 
range of uses, e.g. desktop, distributed and embedded 
systems, web services, mobile applications, etc. 

In the course of the performed calculations, the 
algorithm for solving a general mathematical problem 
is not used directly; instead, the script of the software 
system based on the functioning of its individual 
components and the connections between them is 
implemented. Each component separately solves a local 
math problem describing the state of an individual 
element of a technical system. 

Further development of the methodology is 
possible in the direction of increasing the degree of the 
design process formalization and the software systems 
operation to a level where it is possible to use 
automated development tools, rapid design and 
prototyping. With such a degree of the design process 
formalization, it is possible to develop a specialized 
problem-oriented programming language to create 
software abstractions of technical systems. 
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