

Advanced Materials & Technologies. No. 2, 2019 69

AM&T

DOI: 10.17277/amt.2019.02.pp.069-080

Architectural Design of Software Systems Implementing Models
of Process Equipment

S.Yu. Alekseev

JSC “Roskhimzashchita”,

19, Morshanskoe shosse, Tambov, 392000, Russia

Corresponding author. Tel.: +7 999 725 94 93. E-mail: isz@roshimzaschita.ru

Abstract

The paper describes the fundamentals of architectural design methodology of software systems implementing the tasks of
mathematical modeling of technological processes / objects in the chemical industry. The existing software systems focused on
solving engineering problems based on mathematical modeling of physical and chemical processes carried out in technological
devices are analyzed. The authors show that all software systems are based on the use of numerical solutions of mathematical
modeling tasks for technological processes / objects, which significantly limits their ability to organize the computation
process and requires an individual approach to the development of each software system.

The urgency of developing a universal methodology for constructing software systems implementing models of the
technological processes and equipment based on analytical solutions of mathematical physics tasks in partial derivatives is
discussed. The developed methodology includes principles for formulating mathematical statements of tasks and methods for
solving them ensuring their effective computer implementation; principles for building software systems as structural and
dynamic analogues of technical systems. The application of the methodology is illustrated by the example of developing
a software system implementing a model of non-stationary heat exchange processes in a shell-and-tube heat exchanger.
The main emphasis in the example is put on the dynamic compliance of the software system and process equipment.
It is shown that the calculation of the characteristics of the processes occurring in the heat exchanger simultaneously can be
implemented in parallel in the software system, and the characteristics of successive processes can also be calculated
sequentially.

Keywords

Computer model; software system; computation model; development model; mathematical modeling.

© S.Yu. Alekseev, 2019

Introduction

Mathematical modeling is now widely used to

improve the performance of complex technological
equipment. Modeling is the main tool that provides
additional information about the processes occurring in
it and is used to solve design, optimization,
management, decision-making and forecasting tasks.
In this paper the process equipment is considered as a
technical system – a set of related and interacting
elements. The most complete information about the
patterns and conditions of non-stationary processes
occurring in technical systems can be obtained by
mathematical modeling of the fields of their target
characteristics.

In this case, solutions of mathematical modeling
tasks are considered as a combination of mathematical

operators and algorithms for their use, aimed at
obtaining quantitative characteristics of the fields.
Despite the fact that the solutions presented in this form
fully provide the possibility of calculating the fields,
it is impossible to use them manually without
computing technologies in most cases. A one-time
calculation involves a large number of intermediate
calculations. In practice, such calculations are carried
out repeatedly, for different values of the source data.

Thus, for modeling tasks which are solved in order
to increase the quality of technical systems, it is not the
solutions themselves that are of major importance, but
their software implementation. Programs can represent
separate information systems interacting with a person,
or function as part of technical systems interacting with
their component parts. Solutions are used as the basis

Advanced Materials & Technologies. No. 2, 2019 70

AM&T
of the program, but the program brings the main result.
The user or other information systems interact with
programs, but not with algorithms and mathematical
operators. The form of the software implementation of
algorithms and mathematical operators, as well as the
decisions themselves, determine the quality of the
simulation results obtained: the number of assumptions
made, the accuracy, the time for obtaining the results
and the further possibilities for its use. Therefore, the
software implementation of solutions and its quality,
i.e. such factors as the program structure, the
complexity of its data flow and control, the efficiency
of using computing resources, calculation time,
reliability, resistance to incorrect source data, the
ability to reuse code, are of fundamental importance for
modeling tasks.

Materials and methods

Software implementing the tasks of modeling

processes which occur in technical systems varies from
narrowly specialized applications focused on the
efficient solution of tasks within one application area to
large general-purpose applications designed to solve
a wide range of tasks in various application areas.

General-purpose systems

General-purpose applications are a multi-purpose
analysis tool that can be used in various technical
disciplines. Such applications as ANSYS,
SolidWorks Simulation, Autodesk Simulation, Abaqus
FEA, and MOOSE can be mentioned as an example.
These are large applications focused on working with
powerful desktops or specialized computing stations.

A characteristic feature of these applications is the
unification of formulating modeling tasks, methods for
their solution, and forms for presenting the results
obtained [1 – 7].

The unification of statements is achieved due to
the fact that the user tasks are constructed as special
cases of general statements, which are formulated
separately for each class of processes. Processes are
usually classified according to the physical disciplines
and engineering applications on which they are
oriented, e.g. hydrodynamic processes, deformations of
solids, heat and mass transfer, high and low frequency
oscillations. This form of task statement can be used in
various, unrelated applied fields.

Each common task chooses its own solution which
is used to solve all private, custom tasks based on it.
The main criteria for choosing a method are
universality, wide dissemination, knowledge and

predictability of the obtained results when it is used
within the framework of the class of tasks which the
general task refers to. To solve systems of differential
and algebraic equations expressing the formulations of
modeling tasks, numerical methods are currently the
most widely used. This fact and the criterion of
universality become the reason that the finite element
method and its varieties are used in all the considered
applications for solving modeling tasks [1 – 7].

The result of such applications is a one-time
solution of a particular task with obtaining the fields of
the target characteristics of the modeled processes in
time and space. At the same time, the boundary
conditions of the task and the values of the constants
determining the course of the processes are formulated
at the stage of task statement and are not changed
during the calculation. When changing the boundary
conditions, the task must be set and solved by the user
again. This is the reason for the additional assumption
that the boundary conditions and constants are
permanent for the entire duration of the process.

In real technical systems, several interdependent
processes take place simultaneously. The boundary
conditions and the values of the constants determining
the course of one of the processes may change under
the influence of others. In this case, the search for
process characteristics is possible with repeated,
iterative repetition of calculations for short time
intervals, when new source data are set for each
interval.

In the considered applications, the functionality is
not developed to ensure multiple calculations using the
previously obtained results, which describe the state of
the system at the time of the end of the previous time
interval, as the source data. Difficulties in organizing
such calculations are also determined by the form of
presenting the simulation results, which in these
systems, as well as the formulation and methods of
solution, is focused on a universal and visual
presentation of the results of solving a wide range of
tasks in different, unrelated applied areas to the user.
The results are presented visually in the form of a set of
values, which quantitatively characterize the fields of
the target characteristics, and graphical dependencies.
They are poorly oriented for further, repeated use in
computational procedures, providing an iterative
algorithm, or transfer to other automated systems
ensuring their operation. This makes it difficult to take
into account the specifics of the task being solved and
narrows the scope of application of the simulation
results.

The options for determining the system of
assumptions and uniqueness conditions for constructing
a particular task are limited to the most common ones.

Advanced Materials & Technologies. No. 2, 2019 71

AM&T
Therefore, it is impossible to take into account in detail
the operation features of the simulated processes in the
technical system.

The main feature of general-purpose systems
focused on the unification of solutions for a wide range
of different tasks is the necessity to find a compromise
between the costs on performing calculations and the
accuracy of the results [8]. This is due to the large
number (from thousands to hundreds of thousands) of
finite elements into which the process areas are divided.
For each element, the system of equations describing its
state and behavior is repeatedly iteratively solved. The
set of individual states of all elements determines the
state of the object being modeled.

Designing a large number of particular tasks on
the basis of one general task by setting the values of the
coefficients in the system of equations may cause
discrepancy in the obtained results, which do not
correspond to the physical picture, though the problem
is formally correct. For complex software systems, in
which the software system implementing the modeling
tasks is included as an integral part and ensures the
operation of other systems, it is of fundamental
importance. In this case, the simulation results are
transmitted directly to other systems without the
possibility of their analysis and adjustment by an
expert.

Thus, despite the desire for universality of using
and expanding the range of solved modeling problems,
the general-purpose systems have their own specific
application niche and the area of modeling tasks being
solved. This is stipulated by the features listed above.

Specialized systems

Besides universal general-purpose software

systems, there is a large number of specialized software
systems. The difference consists in detailed considering
only a narrow class of tasks within one application area
allowing to obtain high-quality simulation results.
The spread of computer modeling for solving applied
problems and individual requirements for the quality of
modeling imposed on tasks within each applied area
determine the excess of the number of specialized
software systems over the number of general-purpose
systems.

Compared to universal systems, specialized ones
allow for a more thorough formulation of tasks, taking
into account a greater number of factors and their
interrelations which determine the course of simulated
processes during their formulation. The solution
methods used in these systems allow to obtain more
accurate results compared to the methods used by
universal general-purpose systems. Increasing their

accuracy is achieved by taking into account the
specifics of the task determined by the applied area, the
nature of the processes, the structure of equations and
the way the simulation results are used.

A detailed account of the task features at the stages
of its formulation and solution determines the
improvement of the quality of simulation results when
using specialized systems. The consequence of such
opportunities is a narrow range of tasks. It is possible to
note the tendency according to which the more
specialized the software system is, the higher the
quality of the obtained results [9 – 15].

Specialized programs do not require less
computational resources for their work compared to
universal ones. In most cases the obtained results are
not transmitted to other subsystems and are presented
to the user. The issues of improving the performance of
calculations are considered, but there is no hard limit
on the time for obtaining the results.

The detailed consideration of the process features
complicates the task and requires additional
computational resources when solving it. In general,
both specialized and universal systems require the same
number of simulation results, which must be as high as
possible to increase their accuracy and quality.

Among the specialized modeling programs, we
can single out those based on agent-based modeling
(ABMS). The solution of modeling problems in these
systems is based on the property of software agents to
have conscious behavior – reactive, proactive, and
social. Agent-based modeling is primarily used to study
the behavior and interaction of individuals or
organizations in specific situations or environments.
ABMS can be used to study an existing system, which
is analyzed to understand its behavior in response to
specific changes in the environment or at the design
stages, when creating new systems [16].

The main disadvantages of universal modeling
systems are the limited ability to correctly formulate a
modeling problem, taking into account the features of
the domain and the physical system in which the
simulated processes take place, the automatic addition
of the task statement with expressions and constants in
order to ensure the possibility of its solution when
defining the task, which cannot be solved by the
methods used in the program. This provides the
possibility of obtaining plausible results with the
obviously incorrect formulation of the task, but these
results will not reflect the true picture of the process.
These systems can be used to solve common typical
problems, where there is no special need to take into
account a large number of specific features.
The simulation results must be presented to the expert
so that he can assess their adequacy and, if necessary,

Advanced Materials & Technologies. No. 2, 2019 72

AM&T
correct the formulation of the task with available
means, adjust the implementation of the solution
method and repeat the calculation again.

The disadvantage of specialized programs is
a small range of tasks for each of them. Taking into
account the peculiarities of the processes occurring in
them is so specific that it is very difficult to use them
outside the subject area and the range of tasks for
which they were developed. When new tasks arise, it
becomes necessary to develop a new modeling
program. There is no universal method for developing
programs for modeling processes occurring in technical
systems. The development of each system is a creative,
iterative process that requires a lot of time, human
resources and, consequently, finances.

A common feature of universal and part of
specialized programs is that they implement the design
and solution of a mathematical problem. The physics
and nature of the simulated processes are considered
only at the stage of its design. The resulting problem is
solved further independently using software
implementations of only mathematical operators.
The solution results are the values of individual
functions, each of which represents the target field
characteristics of a single element of the technical
system. With such an organization of modeling, the
dynamics of interaction of the technical system
elements is considered to be limited. There is
a fundamental discrepancy between the time diagrams
of the program and the time diagrams of the technical
system – their statuses do not match at any equal time
intervals from the beginning of the technical system
and the program operation.

Now computer simulation is performed in several
stages. First, assumptions are defined which simplifies
the understanding of the technical system and the
processes occurring in it. Then, for the obtained
simplified representation of the technical system,
a mathematical model is constructed. As a result, the
technical system is replaced by a mathematical one,
with new essential connections between them, which
do not coincide with the essential connections of the
original technical system. The next step is to solve the
resulting system of equations and its software
implementation. It also modifies the entities and
relationships between them, which were present in the
mathematical system, into linguistic elements of the
programming language and fragments of the executed
code representing continuous processes in discrete
form. We can say that the representation of the
technical system is distorted in the process of computer
simulation. This happens more or less at all stages of
computer simulation. The user interacting with the
program sees the program representation of the

technical system, which is the result of three
transformations.

The modern level of the theory and methods of
software systems engineering allows to take into
account the specifics and to expand the possibilities of
using analytical solutions. This implies the definition of
software in terms of system links and functioning
patterns of the technical system elements, where the
simulated processes take place, but not in terms of the
mathematical formulation of the task and algorithms for
its solution. In this case, the software implements the
calculation of the characteristics for the processes
occurring in the technical systems on the basis of
calculations which correspond to these processes
structurally and dynamically. Wherein, the software
itself is represented as a software system that
structurally and dynamically corresponds to the
technical system. The principles of designing the
software systems and the principles of their
functioning, which form the basis of the new
architectural design methodology, have been developed
for this purpose.

Construction and operation principles

of software systems

The paper proposes a universal method of

architectural design of software systems for process
equipment based on the principle of structural and
dynamic correspondence of calculations to the
technical system. It covers two main phases of the
software life cycle – the development phase and the
implementation phase.

The general provisions of methodology are
considered on the example of building a software
system for modeling an industrial adsorber (Fig. 1) and
involve decomposing a technical system, excluding
those components that are not used in calculating the
required characteristics from the point of the adopted
system of assumptions, and determining for each of its
elements a set of quantities characterizing its state,
which are necessary for calculating the required
characteristics. The decomposition of a technical
system is performed to a level at which structural
elements obtained by analytical solutions can be
received.

Next, the image of the technical system is
constructed in the address space of the computing
complex. For each element of the technical system, its
software abstraction is created. It is based on the
methods of object-oriented design and presents a
computational entity consisting of a set of variables
describing its state and a set of functions that perform
operations on them. Functions provide abstraction
behavior.

Advanced Materials & Technologies. No. 2, 2019 73

AM&T

Fig. 1. Building a software image of the technical system on the example of an industrial adsorber

Abstractions are interconnected so that they

organize a structure that coincides with the structure of
the technical system. These are structural links
providing an image in the software system of the
technical system design. Further, information links
representing the interaction of the technical system
elements are added between the abstractions.

Sets of variables equivalent to the previously
defined sets of values that characterize the state of the
technical system elements are implemented for
abstractions. Within each abstraction, a local
mathematical problem is constructed and solved to
calculate the values of its variables. It is constructed
considering certain interrelations of abstractions.
Then functions ensuring the calculation of the values of
state variables and implementing the calculation of
mathematical operators that represent analytical
solutions are determined.

The calculation of the processes characteristics is
provided by the interrelated work of abstractions.
Their interconnection in the calculation process is
carried out through the exchange of messages and
through channels built on the basis of established links
representing the interaction of the technical system
elements.

The main work of software abstractions is
calculating the properties of the corresponding
elements of the technical system. The structural

conformity of the program and the technical system
allows the use of a single method for describing their
states. It is presented as a set of quantitative and
qualitative characteristics of the processes occurring in
its structural elements, a set of characteristics of the
structural elements themselves and a set of
characteristics describing the interaction of elements in
the following form:

{ } { }() ,...,,...,,,...,
11 111
p
b

pc
a

c ssssSS =

 { } { }() ,,...,,,..., 11
p
b

pc
a

c
n nn

ssssS

() (){ } ,,...,,...,,..., 111 1 mcmc iiIiiI (1)

where n is the number of elements in the system,
{ } { }()p

b
pc

a
c

i ii
ssssS ,...,,,..., 11 is the state of the

i-th element of the technical system, { }c
a

c
i

ss ,...,1 is the
vector of the structural element characteristics,
{ }p

b
p

i
ss ,...,1 is the vector of the processes characteristics

occurring in it, m is the number of links of the system
elements, through which the elements interact,
()

1
,...,11 ciiI is the link of the system elements,

1
,...,1 cii

is the vector of interaction characteristics for the
i-th link.

Technical system Decomposition of the technical system Simplification of the technical system

A
pp

ly
in

g
a

sy
st

em
 o

f a
ss

um
pt

io
ns

Real world

Address space of the computing complex

Transition from the technical

system to software system

Information linking Structural linking Generation of software abstractions
of the technical system

Shell Gas flow

Sorbent layer

Shell Gas flow

Sorbent layer

Sorbent layer Shell Gas flow

Advanced Materials & Technologies. No. 2, 2019 74

AM&T

Technical system Software system

State of the element State of abstraction

Changes in the state of elements Changes in the state of abstraction

Interaction of elements Information interchange between
abstractions

Impact of element I1 on element I2 Sending a message by abstraction A (I1)
to abstraction A (I2)

Impact type Message type

Exposure time Message time

Changes in the state Calculation of the state

Time of the state changes Calculation time of the state

Fig. 2. Compliance of the processes in the software and technical systems

The main work of each abstraction is aimed at

calculating the values of the variables contained in it,
describing its state. The software abstractions, as well
as elements of the technical system during the working
process, constantly interact with each other, as a result
of which their state changes. This ensures the need to
perform multiple calculations of the state of each
abstraction. The initial data for calculating the state of
each abstraction are the data of neighboring
abstractions associated with it. This corresponds to the
change in the state of the technical system elements
under the influence of related elements.

Below (Fig. 2) the correspondence of terms
peculiar to a technical system to computing operations
occurring in a software system is shown.

This compliance is the basis of the set of
computational operations allowed in software images
of technical systems.

Temporal diagrams of abstractions are organized
as they are organized for the relevant elements of the
technical system. For example, during the flow of
coolant in the annular space of the heat exchanger, the
heat transfer occurs simultaneously to the tube walls
and the shell. Accordingly, the calculation of their
temperatures is carried out in parallel.

In this case, the coincidence of the states of the
technical and software systems in time can be ensured.
This can be both a coincidence of states in real time,
and, in general, their indirect coincidence in time when
the real-time axis is scaled up or down for the software
system.

The main feature of the execution stage of the
software system is the coincidence of its states and
behavior with the states and behavior of the technical
system.

The equivalence of the software and technical
system structures ensures the presence in the software
system of only abstractions of the technical system
elements and the absence of others (Fig. 3).
All elements performing service calculations,
e.g. centralized data storage, message and transaction
managers, etc., are excluded from the software system
to ensure its operation. The use of software elements
performing service functions is characterized by their
association with all software system elements. Their
exclusion greatly simplifies the software system
structure.

Service calculations cannot be completely
excluded. In this case, they are distributed between
abstractions. When an abstraction approaches to the
technical system element according to the
correspondences shown in Fig. 2, it enhances its
coherence, i.e. the degree of logical completion, and the
focus of all its resources on solving tasks of calculating
the values determining its state. The ideal coherence is
the coherence of the technical system elements.

Fig. 3. Simplification of the software system structure
with the exclusion of service components

(on the example of an eight-element software system
with the exclusion of the service elements 6 and 2)

Advanced Materials & Technologies. No. 2, 2019 75

AM&T
The total number of service calculations in the
distribution of their abstractions decreases. The number
of service calculations also decreases with increasing
the abstraction coherence.

The equivalence of the dynamics of the software
and technical systems, the organization of time
diagrams for the operation of abstractions, as well as
the time diagrams for the operation of the technical
system elements allow to provide parallel computing
(Fig. 4). It increases the efficiency of calculations and
reduces the time spent on their performance.

The dynamic and structural correspondence of the
software and technical systems allows to streamline and
unify the information exchange between abstractions.
The content of information flows in this case is defined
as the parameters of the impact of the technical system
element on the neighboring associated elements. Using
analytical methods for calculating the state of
abstractions always determines the content of
information flows as a set of physical values only.
The representation of information flows between
abstractions according to the correspondence system
shown in Fig. 2 reduces the number of message types
that must be processed during the work of abstractions
(Fig. 5). This allows to further improve the efficiency
of the internal work of abstractions themselves,
i.e. it leads to reducing the cost of computing resources
for generating new abstractions, receiving and
processing messages, and simplification of internal
control flows.

To represent the properties of abstractions,
elementary types or complex data structures are used.
Elementary data represent single values describing the
above listed properties of components: geometric
parameters, physical characteristics, etc. If the physical

Fig. 4. Reducing computation time when organizing parallel
work of abstractions

a – Consistent work of abstractions ∑
=
τ=τ

n

i
i

1
;

b – Parallel work of abstractions nii ...,,1,max ∈τ=τ

Fig. 5. Unification of the number of transmitted messages
(on the example of a software system consisting

of four abstractions; different types of messages are shown
with different geometric shapes, and different sizes

of the figures shows different sizes of messages)

characteristics of the media change, e.g. depending on
the temperature, during the simulated processes, the
corresponding properties of the component are
represented by functions.

A single abstraction is a complex program
element. Representing the technical system element, its
physical and structural characteristics, it implements
the mechanism for calculating the states of the
corresponding element of the technical system and the
processes taking place therein. The main characteristics
of the technical system processes are temporal and
spatial temperature and concentration fields. They are
represented by complex mathematical operators, which
cannot be described using only elementary data types.
For their representation, program elements, which
include complex data structures describing the values
of constants for mathematical operators and functions
implementing the calculation of their values, are used.
These elements are located inside abstractions; in
relation to the software system, they are local and not
visible outside the abstractions in which they are
implemented. In such a way the software abstractions
can save detailed information about the set of their
unique states in the form of fields of target
characteristics, which are functions of three coordinates
and time.

Applied aspects of the methodology

The applied aspects of the basic methodological

principle, i.e. the structural and dynamic
correspondence of the program and technical systems,
are illustrated by the example of building a software
system for modeling a shell-and-tube heat exchanger.
The main attention is paid to illustrating the features of
constructing the dynamic correspondence and justifying
the choice of those computational processes that will be
performed in parallel and in consistency. Two different

1 2 3 n • • •

τ1 τ2 τ3 τn

a)

b)

1 2 3 • • • n τ1 τ2 τ3 τn

Advanced Materials & Technologies. No. 2, 2019 76

AM&T
options are given for representing the dynamics of a
technical system and the corresponding options for
organizing the dynamics of a software system.

As an illustration, a computer model of a one-way
shell-and-tube heat exchange equipment is used.
The nonlinearity of the task for calculating non-
stationary heat transfer modes is caused by changing
the heat exchange process of thermophysical properties.
One of the ways to take it into account is representing
the heat exchange zone as a set of sections where the
thermophysical properties of coolants can be
considered constant.

The non-stationary cell is a fragment of the
apparatus enclosed between two planes perpendicular
to the longitudinal axis of the apparatus. It was
assumed for each cell that the thermophysical
characteristics of coolants along the cell length remain
constant, corresponding to the temperature at the
entrance to the cell, and change abruptly during the
transition to the next cell. Temperatures of coolants
along the cell length become solutions of the
differential equation of heat transfer by a fluid moving
in the mode of ideal displacement along the channel
with allowance for heat transfer by thermal
conductivity [17] (Fig. 6).

The calculation includes the solution of two non-
stationary tasks of thermal conductivity:

− for a hollow unlimited cylinder (the calculation
of the temperature field in the walls of the apparatus
tubes);

− for a double-layer unlimited cylinder (the
calculation of the temperature field in the heat-insulated
apparatus wall).

First, the temperature of the inner and outer walls
of the heat exchanger tube is calculated. To do this, the

non-stationary thermal conductivity task in the cylinder
is solved. The temperature field in the wall is described
by solving a differential equation [17].

According to the obtained wall temperatures, the
density of the heat flow from the hot coolant to the wall
and from the wall to the cold coolant is calculated.
Next, the amount of heat which hot and cold coolants
have received is calculated. According to the known
initial temperature of the coolants in the cell and the
amount of heat which the coolant has received in the
cell, it is possible to calculate the coolant temperature
at the cell outlet.

The cell length is taken such that the temperature
change along its length is sufficiently small, which
entails a sufficiently small change in the
thermophysical properties. Getting the temperature
distribution in the apparatus involves the calculation of
all the cells that make up the apparatus.

The way to solve the task is determined by the
adopted system of assumptions, i.e. which processes
are considered, and from what point of view they are
considered. Below there are two different calculation
options based on different views of the processes
occurring in the coolant. Herewith, these options
clearly illustrate the features of the considered method
for designing software systems.

The structural conformity of the software and
technical systems for these two described variants
remains unchanged. These calculation variants differ in
the ways of considering the dynamics of the technical
system and, accordingly, their representation in the
software system and calculations. The structure of the
software system is shown in Fig. 7.

Fig. 6. Thermal scheme of a non-stationary cell:
HC – hot coolant; CC – cold coolant;

1 – tube space; 2 – tube wall; 3 – annular space; 4, 5 – housing wall with an insulation layer; 6 – environment;
tс1 – hot coolant temperature; tc2 – cold coolant temperature; tс3 – ambient temperature

HC

CC

t1 in

t2 in

t1 out

t2 out

Advanced Materials & Technologies. No. 2, 2019 77

AM&T

Fig. 7. Software system structure

The first option is based on the sequential

calculation of all cells (Fig. 8). Here the calculation
process is compared to the movement process of the hot
coolant and the successive change in its temperature
along the movement direction. For the forward flow,
when the temperatures of the two coolants in the cell
are known, it begins with the first one, into which the
hot coolant enters and continues along its movement to
the last cell. In the case of reverse flow, coolants are
fed from opposite ends of the apparatus and,

accordingly, the temperature of one coolant is known in
the first cell, while the other – in the last cell. In such a
situation, the above condition for the temperature
awareness is not fulfilled for two coolants in the cell
simultaneously, and the start of the sequential
calculation of all cells is impossible. Therefore, an
iterative algorithm is used. The calculation is carried
out for a fixed time interval. For the next interval,
another hot coolant inlet temperature is taken and the
calculation is repeated.

Fig. 8. Algorithm for calculating a non-stationary temperature field in the apparatus with sequential cell calculation

Entering the initial
data for calculation

Setting the time
counter

to the initial state

Resetting the cell
counter

to the initial state

Calculating
the temperature of the
heat exchanger tubes

Calculating
the temperature of the
heat exchanger body

Calculating
the temperature

of the hot coolant
at the cell outlet

Calculating
the temperature

of the cold coolant
at the cell outlet

The last cell
is calculated

No

Yes

Yes

No

Displaying
the temperature field

in the apparatus
for the current time

Temperature
field

is calculated
for the last
time point

Increasing the time
counter in accordance
with the selected step

Moving to next cell

Setting the initial
temperatures

for the next cell

Apparatus Cell

Hot coolant Tube wall Cold coolant Shell wall

1

1 1

1 1

1

1 1

1,...,n

Advanced Materials & Technologies. No. 2, 2019 78

AM&T
The second option considers the heat exchange

process as a combination of two independent actions
separated in time – the movement of coolants and the
calculation of their temperatures in each cell. These two
actions in the heat exchanger occur simultaneously,
while in the software system they are separated in time.
First, the coolants are moved, then they are positioned
in space, and finally the temperatures are calculated.
Here, the process of calculating temperatures is
compared to the process of changing the coolant
temperature over the entire length of the process area in

the absence of coolant movement during the time
interval when the calculation is carried out. After the
coolant temperatures have been calculated, the
transition to the next time interval is performed.
This calculation option does not require various
algorithms for the forward and reverse flow calculation.
The calculation of these two options is implemented by
a universal algorithm. This is achieved by separating
the processes of moving coolants and heat exchangers
in time (Fig. 9).

Fig. 9. Algorithm for calculating the temperature field in the apparatus with the parallel cell calculation

Entering the initial
data for calculation

Setting the time counter
to the initial state

Moving
the hot coolant

Moving
the cool coolant

Calculating
the temperature

of the heat exchanger
tubes in C1 cell

Calculating
the temperature

of the hot coolant
at C1 cell outlet

Calculating
the temperature

of the heat exchanger
body in C1 cell

Calculating
the temperature

of the cold coolant
at C1 cell outlet

Displaying the
temperature field for
the current time point

Temperature field
is calculated for the last

time point

Yes

No

Increasing
the time counter
in accordance

with the selected step

Calculating
the temperature

of the heat exchanger
tubes in the cell Сn

Calculating
the temperature

of the heat exchanger
body in the cell Сn

Calculating
the temperature

of the hot coolant
at Сn cell outlet

Calculating
the temperature

of the cold coolant
at Сn cell outlet

Advanced Materials & Technologies. No. 2, 2019 79

AM&T

Fig. 10. Time line of calculating a non-stationary cell

The algorithm for calculating a single cell in the

first and second variants is implemented in parallel, in
accordance with the processes occurring in it. Fig. 10
shows this algorithm in the time line.

The two shown options fully implement the
principle of the considered method on the dynamic
correspondence of the program and technical systems.
The first calculation option is based on the
representation of the process when the coolant
temperature changes sequentially as it moves through
the apparatus. Accordingly, the coolant temperature in
the cells is calculated sequentially. Parallel temperature
calculation in all cells in this case is impossible.

The second option is based on the idea of placing
coolants in the heat exchanger so that the heat exchange
process takes place simultaneously along the entire
length of the process area. The initial temperatures of
coolants in each cell are known. Herewith, the
calculation of cells is organized in parallel.

Fig. 7 and 8 show that the number of conditional
statements, branching and transitions decrease as the
degree of parallelism increases. It results in a reduction
in the number of decisions that need to be made during
the program execution.

Conclusion

The developed methodology makes it possible to

build software systems in terms of a technical system,
the area of its use and purpose, as well as to take into
account the peculiarities of the software system
functioning at the structural level. Besides, the
generated abstractions and semantics based on the
objects of the technical complex and the subject area
allow developers and, especially, users to perceive
themselves as directly working with the subject area
elements. This condition determines the main

advantages of the considered methodology,
i.e. improving the efficiency of the application
development process, the possibility of involving experts
from the applied area into the development process,
improving the efficiency of the software system and
computing, the ability to build applications of a wide
range of uses, e.g. desktop, distributed and embedded
systems, web services, mobile applications, etc.

In the course of the performed calculations, the
algorithm for solving a general mathematical problem
is not used directly; instead, the script of the software
system based on the functioning of its individual
components and the connections between them is
implemented. Each component separately solves a local
math problem describing the state of an individual
element of a technical system.

Further development of the methodology is
possible in the direction of increasing the degree of the
design process formalization and the software systems
operation to a level where it is possible to use
automated development tools, rapid design and
prototyping. With such a degree of the design process
formalization, it is possible to develop a specialized
problem-oriented programming language to create
software abstractions of technical systems.

Acknowledgments

The work was supported by the Ministry of
Education and Science of the Russian Federation in the
framework of the project part (Project
8.2906.2017/PCh).

References

1. Stolarski T., Nakasone Y., Yoshimoto S.
Engineering Analysis with ANSYS Software.
Butterworth-Heinemann, 2018.

Calculating
the temperature

of the heat
exchanger tubes

Calculating
the temperature

of the hot coolant
at the cell outlet

τ1

τ2

τ3

Calculating
the temperature

of the heat
exchanger body

Calculating
the temperature

of the cold coolant
at the cell outlet

Advanced Materials & Technologies. No. 2, 2019 80

AM&T
2. Shih R. Introduction to Finite Element Analysis

Using Solid Works Simulation. SDC publications, 2014.
3. Systèmes D. ABAQUS Unified FEA: Complete

Solutions for Realistic Simulation. Dassault Systemes,
2014. Available at: https://www.3ds.com/productsservi-
ces/simulia/products/abaqus/ (accessed 9 March 2018).

4.Tonks M., Gaston D., Millett P., Andrs D.,
Talbot P. An Object-oriented Finite Element
Framework for Multiphysics Phase Field Simulations.
Comp. Mat. Sci., 2012. vol. 51 (1), pp. 20–29.
doi:10.1016/j.commatsci.2011.07.028.

5. Prof. Sham Tickoo Purdue Univ. Autodesk
Simulation Mechanical 2016 for Designers. CADCIM
Technologies, 2015.

6. Giełżecki J., Jakubowski T. The Simulation
of Temperature Distribution in a Ground Heat
Exchanger – GHE Usingthe Autodesk CFD Simulation
Program. Renewable Energy Sources: Engineering,
Technology, Innovation. Springer, Cham, 2018,
pp. 333-343.

7. Finite Element Analysis Software (Fea
Software). Available at: www.autodesk.com/solutions/
finite-element-analysis (accessed 9 March 2018).

8. Madenci E., Guven I. The Finite Element
Method and Applications in Engineering Using
ANSYS®. Springer, 2015.

9. Dubbeldam D., et al. RASPA: Molecular
Simulation Software for Adsorption and Diffusion in
Flexible Nanoporous Materials. Molecular Simulation,
2016, vol. 42.2, pp. 81-101.

10. Borgenstam A., et al. DICTRA, a Tool for
Simulation of Diffusional Transformations in Alloys.
Journal of Phase Equilibria, 2000, vol. 21, issue 3,
pp. 269.

11. Sinha S., Chandel S.S. Review of Software
Tools for Hybrid Renewable Energy Systems.
Renewable and Sustainable Energy Reviews, 2014,
vol. 32, pp. 192-205.

12. Choudhari C.M., Narkhede B.E., Mahajan S.K.
Casting Design and Simulation of Cover Plate Using
AutoCAST-X Software for Defect Minimization with
Experimental Validation. Procedia Materials Science,
2014, vol. 6, pp. 786-797.

13. Rabold F., Kuna M. Automated finite element
simulation of Fatigue Crack Growth in Three-
dimensional Structures with the Software System
ProCrackProcedia Materials Science, 2014, vol. 3,
pp. 1099-1104.

14. Agapito G., Puglisi A., Esposito S. PASSATA:
Object Oriented Numerical Simulation Software for
Adaptive Optics. Adaptive Optics Systems V.
International Society for Optics and Photonics, 2016,
vol. 9909, pp. 99097E.

15. Pal P., et al. A Visual Basic Simulation
Software Tool for Performance Analysis of a
Membrane-based Advanced Water Treatment Plant.
Environmental Science and Pollution Research, 2014,
vol. 21, issue 3, pp. 1833-1849.

16. Whitaker E.T. Agent-based Simulation.
Modeling and Simulation in the Systems Engineering
Life Cycle. Springer, London, 2015, pp. 139-155.

17. Tugolukov E.N. Reshenie zadach teplo-
provodnosti metodom konechnyh integral'nyh
preobrazovanij [The solution of heat conductivity
problems by the method of finite integral
transformations]. Tambov, 2005, 116 p. (Rus)

